The

Complete
Reference

dard C++ Class Library

Standard C++ defines an extensive set of classes that provide support
for anumber of common activities, including I/O, strings, and numeric
processing. The class library is in addition to the function library
described in Part Three. The class library forms a major portion of the
C++ language and defines much of its character. Despite its size, the
class library is easy to master because it is organized around

object-oriented principles.

The Standard C++ library is quite large and an in-depth description of all of its
classes, features, attributes, and implementation details is beyond the scope of this
book. (A full description of the class library would easily fill a large book!) However,
while most of the class library is for general use, some of it is intended mostly for
compiler developers, or those programmers implementing extensions or enhancements.
Therefore, this section describes only those parts of the class library that are typically
used in an application. If you will be using the library for specialized work, you will
need to acquire a copy of the C++ standard, which contains the technical description
of the class library.

The

Complete
Reference

The Standard C++
I/0 Classes

787

788 C++: The Complete Reference

Two, there are currently two versions of C++'s I/O library in common use. The

first is the old-style library, which is not defined by Standard C++. The second
is the modern, templatized Standard C++ /0 system. Since the modern 1/0O library is
essentially a superset of the old-style one, its is the only one described here. However,
much of the information still applies to the older version.

l For an overview of C++ /O, see Chapters 20 and 21.
| The 1/0 Classes

The Standard C++ /O system is constructed from a rather complex system of template
classes. These classes are shown here.

This chapter describes the Standard C++ {/O class library. As explained in Part

Class Purpose

basic_ios Provides general-purpose /O operations
basic_streambur Low-level support for 1/0
basic_istream Support for input operations
basic_ostream Support for output operations
basic_iostream Support for input/output operations
basic_filebuf Low-level support for file [/O
basic_ifstream Support for file input

basic_ofstream Support for file output

basic_fstream Support for file input/output
basic_stringbuf Low-level support for string-based I/O
basic_istringstream Support for string-based input
basic_ostringstream Support for string-based output
basic_stringstream Support for string-based input/output

Also part of the I/O class hierarchy is the non-template class ios_base. It provides
definitions for various elements of the I/O system.

Chapter 32: The Standard C++ 1/0 Classes

The C++ 1/0 system is built upon two related but different template class hierarchies.
The first is derived from the low-level I/O class called basic_streambuf. This class supplies
the basic, low-level input and output operations, and provides the underlying support
for the entire C++ 1/0 system. The classes basic_filebuf and basic_stringbuf are derived
from basic_streambuf. Unless you are doing advanced /0 programming, you will not
need to use basic_streambuf or its subclasses directly.

The class hierarchy that you will most commonly be working with is derived from
basic_ios. This is a high-level I/O class that provides formatting, error-checking, and
status information related to stream 1/0. basic_ios is used as a base for several derived
classes, including basic_istream, basic_ostream, and basic_iostream. These classes are
used to create streams capable of input, output, and input/output, respectively. Specifically,
from basic_istream are derived the classes basic_ifstream and basic_istringstream, from
basic_ostream are derived basic_ofstream and basic_ostringstream, and from
basic_iostream are derived basic_fstream and basic_stringstream. A base class
for basic_ios is ios_base. Thus, any class derived from basic_ios has access to the
members of ios_base.

The 1/O classes are parameterized for the tvpe of characters that they act upon
and for the traits associated with those characters. For example, here is the template
specification for basic_ios:

template <class CharType, class Attr = char_traits<CharTvpe> >
class basic_ios: public jos_base

Here, CharType specifies the type of character (such as char or wchar_t) and Attr specifies
a type that describes its attributes. The generic type char_traits is a utility class that defines
the attributes associated with a character.

As explained in Chapter 20, the 17O library creates two specializations of the template
class hierarchies just described: one for 8-bit characters and one for wide characters. Here
is a complete list of the mapping of template class names to their character and wide-
character versions.

Template Character-Based Wide-Character-Based
Class Class Class

basic_ios 108 wios

basic_istream istream wistream

basic_ostream ostream wostream

basic_iostream iostream wiostream

789

790 C++: The Complete

Template
Class

basic_ifstream
basic_ofstream

basic_fstream

basic_istringstream
basic_ostringstream

basic_stringstream

basic_streambuf
basic_filebuf

basic_stringbuf

Reference

Character-Based
Class

ifstream
ofstream

fstream

istringstream
ostringstream

stringstream

streambuf
filebuf
stringbuf

Wide-Character-Based
Class

wifstream
wofstream

wistream

wistringstream
wostringstream

wstringstream

wstreambuf
wfiilebuf

wstringbuf

Since the vast majority of programmers will be using character-based 1/0, those are
the names used by this chapter. Thus, when referring to the 1/O classes, we will simply
use their character-based names rather than their internal, template names. For instance,
this chapter will use the name ios rather than basic_ios, istream rather than basic_istream,
and fstream rather than basic_fstream. Remember, parallel classes exist for wide-
character streams and they work in the same way as those described here.

The 1/0 Headers

The Standard C++ /0 system relies upon several headers. They are shown here.

Header

<fstream>
<iomanip>
<ios>
<iosfwd>
<iostream>
<istream>

<ostream>

For
File1/0

Parameterized 1/O manipulators

Basic I/0O support

Forward declarations used by the I/O system

General I/O
Basic input support

Basic output support

Chapter 32: The Standard C++ 1/0 Classes

Header For
<sstream> String-based streams
<streambuf: Low-level I/O support

Several of these headers are used internally by the I/O system. In general, your
program will only include <iostream>, <fstream>, <sstream>, or <iomanip>.

The Format Flags and 1/0 Manipulators

Each stream has associated with it a set of format flags that control the way information
is formatted. The ios_base class declares a bitmask enumeration called fmtflags in

which the following values are defined.

adjustfield basefield boolalpha
fixed floatfield hex

left oct right
showbase showpoint showpos
unitbuf uppercase

These values are used to set or clear the format flags, using functions such as setf() and

dec
internal
scientific

skipws

unsetf(). A detailed description of these flags is found in Chapter 20.

In addition to setting or clearing the format flags directly, you may alter the format
parameters of a stream through the use of special functions called manipulators, which

can be included in an 1/O expression. The standard manipulators are shown in the

following table:

Manipulator

boolalpha
dec

endl

ends
fixed
flush

hex

Purpose

Turns on boolapha flag.
Turns on dec flag.

Output a newline character
and flush the stream.

Output a null.
Turns on fixed flag.
Flush a stream.

Turns on hex flag.

Input/Output
Input/Output
Input/Output
Output

Output
Output
Output
Input/Output

791

C++: The Complete Reference

Manipulator Purpose Input/Output
internal Turns on internal flag. Output
left Turns on left flag. Output
noboolalpha Turns off boolalpha flag. Input/Output
noshowbase Turns off showbase flag. Output
noshowpoint Turns off showpoint flag. Output
noshowpos Turns off showpos flag. Output
noskipws Turns off skipws flag. Input
nounitbuf Turns off unitbuf flag. Output
nouppercase Turns off uppercase flag. Output
oct Turns on oct flag. Input/Output
resetiosflags (fmtflags f) Turn off the flags Input/Output
specified in f.
right Turns on right flag. Output
scientific Turns on scientific flag. Output
setbase(int base) Set the number base to base. Input/Output
setfill(int ch) Set the fill character to ch. Output
setiosflags(fmtflags f) Turn on the flags specified in f. Input/output
setprecision (int p) Set the number of digits of Output
precision.
setw(int w) Set the field width to w. Output
showbase Turns on showbase flag. Output
showpoint Turns on showpoint flag. Output
showpos Turns on showpos flag. Output
skipws Turns on skipws flag. Input
unitbuf Turns on unitbuf flag. Output
uppercase Turns on uppercase flag. Qutput
ws Skip leading white space. Input

To use a manipulator that takes a parameter, you must include <iomanip>.

Chapter 32: The Standard C++ /0 Classes 793

' Several Data Types

[n addition to the fmtflags type just described, the Standard C+ + [/0 svstem defines
several other types.

The streamsize and streamoff Types
An object of type streamsize is capable of holding the largest number of bytes that will
be transferred in any one 1/O operation. It is typically some form of integer. An object
of type streamoff is capable of holding a value that indicates an offset position within a
stream. [t is typically some form of integer. These types are defined in the header <ios>,
which is automatically included by the 1/0 svstem.

The streampos and wstreampos Types
An object of type streampos is capable of holding a value that represents a position
within a char stream. The wstreampos type is capable of holding a value that represents
a position with a wchar_t stream. These are defined in <iosfwd>, which is automatically
included by the 1/0O system.

The pos_type and off_type Types
The types pos_type and off_type create objects (typically integers) that are capable of
holding a value that represents the position and an offset, respectively, within a stream.
These types are defined by ios (and other classes) and arc essentially the same as
streamoff and streampos (or their wide-character equivalents).

The openmode Type
The type openmode is defined bv ios base and describes how a file will be opened.
1t will be one or more of these values.

app Append to end of file.

ate Seek to end of file on creation.
binary Open file for binary operations.
in Open file for input.

out Open file for output.

trunc Erase previously existing file.

You can combine two or more of these values by ORing them together.

794 C++: The Complete Reference

The iostate Type

The current status of an /O stream is described by an object of type iostate, which is
an enumeration defined by ios_base that includes these members.

Name Meaning

goodbit No errors occurred.

eofbit End-of-file is encountered.

failbit A nontatal 1/0O error has occurred.
badbit A fatal 1/0O error has occurred.

The seekdir Type
The seekdir type describes how a randome-access file operation will take place. It is
defined within ios_base. {ts vahid values are shown here.

beg Beginning-ot-file
cur Current location
end End-of-file

The failure Class

Inios_base is defined the exception type failure. It serves as a base class for the types
of exceptions that can be thrown by the [/0 system. It inherits exception (the standard
exception class). The failure class has the following constructor:

explicit failure(const string &str);

Here, str is a message that describes the error. This message can be obtained from a failure
object by calling its what() function, shown here:

virtual const char *what() const throw();

___| Overload << and >> Operators

The following classes overload the << and/or >> operators relative to all of the built-in
data types.

Chapter 32: The Standard C++ 1/0 Classes

basic_istream
basic_ostream
basic_iostream

Any classes derived from these classes inherit these operators.

__| The General-Purpose 1/0 Functions

The remainder of this chapter describes the general-purpose 1,/0 functions supplied by
Standard C++. As explained, the Standard C++ 1/0 system is built upon an intricate
hierarchy of template classes. Many of the members of the low-level classes are not
used for application programming. Thus, they are not described here.

bad

#include <icstream>
bool bad{() const;

The bad() function is a member of ios.

The bad() function returns true if a fatal I/O error has occurred in the associated
stream; otherwise, false is returned.

A related function is good().

clear

#include <iostream>
void clear{iostate flags = goodbit);

The clear() function is a member of ios.

The clear() function clears the status flags associated with a stream. If flags is goodbit
(as it is by default), then all error flags are cleared (reset to zero). Otherwise, the status
flags will be set to whatever value is specified in flogs.

A related function is rdstate().

eof

;

i

: #include <iostream>
%@ bool eof () const:

795

796 C++: The Complete Reference

The eof() function is a member of ios.

The eof() function returns true when the end of the associated input file has been
encountered; otherwise it returns false.

Related functions are bad(), fail(), good(), rdstate(), and clear().

exceptions

#include <iostream>
iostate exceptions() const;
void exceptions (icstate flags);

The exceptions() function is a member of ios.

The first form returns an iostate object that indicates which flags cause an exception.
The second form sets these values.

A related tunction is rdstate().

fail

#inciuae <iostre

&
bool fail() const;

The fail() function is a member of ios.

The fail() function returns true if an 1/0O error has occurred in the associated strean.
Otherwise, it returns false

Related functions are good(), eof(), bad(), clear(), and rdstate().

#include <iostream-
char fill(} censt;
char fill(char ch);

The fill() function is a member of ios.

By default, when a field needs to be filled, it is filled with spaces. However, vou can
specify the fill character using the fill() function and specifying the new fill character
in ch. The old fill character is returned.

To obtain the current fill character, use the first form of fill(), which returns the
current fill character.

Chapter 32: The Standard C++ 1/0 Classes

Related functions are precision() and width().
flags

de <icstream>

flags{) const;

flags (fmtflags £f);

The flags() function is a member of ios (inherited from ios_base).

The first form of flags() simply returns the current format flags settings of the
associated stream.

The second form of flags() sets all format flags associated with a stream as specified
by £ When vou use this version, the bit pattern found in fis copied into the format flags
associated with the stream. This version also returns the previous settings.

Related functions are unsetf() and setf().

flush

#inciude <iostrean>

ostream &flush();

The flush() function is a member of ostream.

The flush() function causes the buffer connected to the associated output
stream to be physically written to the device. The function returns a reference to
its associated stream.

Related functions are put() and write().

fstream, ifstream, and ofstream

explicit ofstreamiconst char * fiiename,

ios: :openmode mode=ios::out);

797

798

C++: The Complete Reference

The fstream(), ifstream(), and ofstream() functions are the constructors of the
fstream, ifstream, and ofstream classes, respectively.

The versions of fstream(), ifstream(), and ofstream() that take no parameters
create a stream that is not associated with any file. This stream can then be linked
to a file using open().

The versions of fstream(), ifstream(), and ofstream() that take a filename for their
first parameters are the most commonly used in application programs. Although it is
entirely proper to open a file using the open() function, most of the time you will not
do so because these ifstream, ofstream, and fstream constructors automatically open
the file when the stream is created. The constructors have the same parameters and
defaults as the open() function. (See open for details.) For instance, this is the most
common way you will see a tile opened:

ifstream mystream("myfile");

If for some reason the file cannot be opened, the value of the associated stream
variable will be false. Therefore, whether you use a constructor to open the file or an
explicit call to open(), you will want to confirm that the file has actually been opened
by testing the value of the stream.

Related functions are close() and open().

#include <iostream:-
streamsize gcount(: const;

The gcount() function is a member of istream.

The geount() function returns the number of characters read by the last
input operation.

Related functions are get(), getline(), and read().

#include <iostream:

int get();

istream &get (char «ch):
istream &get(char ~huf, streamsize num);

istream &get (char “hbuf, streamsize num, char delim);
e

istream &get {streanbuf &bhuf);

istrean &get(strearbuf &buf, char delim);

Chapter 32: The Standard C++ 1/0 Classes 799

The get() function is a member of istream.

In general, get() reads characters from an input stream. The parameterless form
of get() reads a single character from the associated stream and returns that value.

get(char &ch) reads a character from the associated stream and puts that value
in ¢ 1t returns a reference to the stream.

get(char *buf, streamsize num) reads characters into the array pointed to by buf
until either -1 characters have been read, a newline is found, or the end of the file
has been encountered. The array pointed to by bif will be null terminated by get(). If
the newline character is encountered in the input stream, it is not extracted. Instead, it
remains in the streem until the next input operation. This function returns a reference
to the stream.

get(char *buf, streamsize num, char delim) reads characters into the array pointed
to by buf until cither num—-1 characters have been read, the character specified by delim
has been found, or the end of the file has been encountered. The array pointed to by buf
will be null terminated by get(). If the delimiter character is encountered in the input
stream, it is not extracted. Instead, it remains in the stream until the next input operation.
This function returns a reference to the stream.

get(streambuf &buf) reads characters frem the input streamn into the streambuf
object. Characters are read until a newline is tound or the end of the file is encountered.
It returns a reference to the stream. If the newline character is eacountered in the input
stream, it is not extracted.

get(streambuf &buf, char delim) reads characters from the nput stream into the
streambuf object. Characters are read until the character specified by defint is found or
the end of the file is encountered. It returns a reference to the stream. If the delimiter
character is encountered in the input stream, it is not extracted.

Related functions are put(), read(), and getline().

getline

#include <iostream>

istream &getline(char *buf, strearsize

ar delim);

istream &getline(char *buf, streamsize num,

The getline() function is a member of istream.

getline(char *buf, streamsize nui) reads characters into the array pointed to by buf
until either nim=1 characters have been read, a newline character has been found, or the
end of the file has been encountered. The array pointed to by buf will be null terminated
by getline(). If the newline character is encountered in the input stream, it is extracted
but is not put into iuf. This function returns a reference to the stream.

getline(char *buf, streamsize num, char delim) reads characters into the array
pointed to by buf until either num=1 characters have been read. the character specified
by delint has been found, or the end of the file has been encountered. The array pointed

800 C++:The Complete Reference

to by buf will be null terminated by getline(). If the delimiter character is encountered
in the input stream, it is extracted but is not put into bitf. This function returns a reference
to the stream.

Related functions are get() and read().

good

hool goocd!) const:

The good() function is a member of ios.

The good() function returns true if no I/O errors have occurred in the associated
stream; otherwise, it returns false.

Related functions are bad(), fail(), eof(), clear(), and rdstate().

ignore
#include
lstream &ignore{s reamsize num = 1, int delim = ROF);

The ignore() function is a member of istream.

You can use the ignore() member function to read and discard characters from the
input stream. It reads and discards characters until either nim characters have been
ignored (1 by default) or until the character specified by delim is encountered (EOF by
default). If the delimiting character is encountered, it is removed from the input stream.
The function returns a reference to the stream.

Related tunctions are get() and getline().

open

ilconst char *fiilename,
ios::openmod: mede = ios::in | ios:: out);
peni{const char *filename,

:operuncds mode = 1os::in);

yiconst char *fiiename,

los::openmods mode = ios:: out | ios::tm

r
=
o
s
0

Chapter 32: The Standard C++ 1/0 Classes

The open() function is a member of fstream, ifstream, and ofstream.

A file is associated with a stream by using the open() function. Here, filename is the
name of the file, which may include a path specifier. The value of mode determines how
the file is opened. It must be one (or more) of these values:

0s::app
10s::ate
ios:binary
ios:in
10s::out
ios:trunc

You can combine two or more of these values by ORing them together.

Including ios::app causes all output to that file to be appended to the end. This
value can only be used with files capable of output. Including ios::ate causes a seek to
the end of the file to occur when the file is opened. Although ios::ate causes a seek
to the end-of-file, I/O operations can still occur anywhere within the ile.

The ios::binary value causes the file to be opened for binary I/O ope -ations. By
default, files are opened in text mode.

The ios:in value specifies that the file is capable of input. The ios::out value specifies
that the file is capable of output. However, creating an ifstream stream implies input,
and creating an ofstream stream implies output, and opening a file using fstream
implies both input and output.

The ios:trunc value causes the contents of a preexisting file by the same name to be
destroyed, and the file is truncated to zero length.

In all cases, if open() fails, the stream will be false. Therefore, before using a file,
you should test to make sure that the open operation succeeded.

Related functions are close(), fstream(), ifstream(), and ofstream().

peek

#include <iostream>
int peek();

The peek() function is a member of istream.

The peek() function returns the next character in the stream or EOF if the end of
the file is encountered. It does not, under any circumstances, remove the character
from the stream.

A related function is get().

802 C++: The Complete Reference

precision

#include <iostream>
streamsize precision() const;
streamsize precision(streamsize p);

The precision() function is a member of ios (inherited from ios_base).

By default, six digits of precision are displayed when floating-point values are output.
However, using the second form of precision(), you can set this number to the value
specified in p. The original value is returned.

The first version of precision() returns the current value.

Related functions are width() and fill().

#include <iogtream>
ostream &put (char ch);

The put() function is a member of ostream.
The put() function writes ¢/ to the associated output stream. It returns a reference

to the stream.
Related functions are write() and get().

putback

#include <iostream>
istream &putback(char ch);

The putback() function is a member of istream.
The putback() function returns ch to the associated input stream.
A related function is peek().

rdstate

#include <iostream>
liostate rdstate() const;

Chapter 32: The Standard C++ 1/0 Classes

The rdstate() function is a member of ios.

The rdstate() function returns the status of the associated stream. The C++ [/O
system maintains status information about the outcome of each I/0 operation relative
to each active stream. The current state of a stream is held in an object of type iostate,
in which the following flags are defined:

Name Meaning

goodbit No errors occurred.

eofbit End-of-file is ericountered.

failbit A nonfatal I/O error has occurred.
badbit A fatal 1/0O error has occurred.

These flags are enumerated inside ios (via ios_base).

rdstate() returns goodbit when no error has occurred; otherwise, an error bit has
been set.

Related functions are eof(), good(), bad(), clear(), setstate(), and fail().

read

#include <iostream>
istream &read(char *buf, streamsize num);

The read() function is a member of istream.
The read() function reads num bytes from the associated input stream and puts
them in the buffer pointed to by buf. If tne end of the file is reached before num
- characters have been read, read() simply stops, sets failbit, and the buffer contains
as many characters as were available. (See gcount().) read() returns a reference to
the stream.
Related functions are gcount(), readsome(), get(), getline(), and write().

readsome

#include <iostream>
streamsize readsome{char *huf, streamsize num):

The readsome() function is a member of istream.
The readsome() function reads num bytes from the associated input stream
and puts them in the buffer pointed to by buf. If the stream contains less than num

803

804 C++: The Complete Reference

characters, that number of characters are read. readsome() returns the number of
characters read. The difference between read() and readsome() is that readsome()
does not set the failbit if there are less than num characters available.

Related functions are gcount(), read(), and write().

seekg and seekp

#include <iostream>
istream &seekg(off_type offset, ios::seekdir origin)

istream &seekg(pos_type position):;

ostrean &seekp(off_type offset, ios::seekdir origin);
ostream &seekp(pos_type position);

The seekg() function is a member of istream, and the seekp() function is a member
of ostream.

In C++'s [/O system, you perform random access using the seekg() and seekp()
functions. To this end, the C++ [/O system manages two pointers associated with a file.
One is the get pointer, which specifies where in the file the next input operation will occur.
The other is the put pointer, which specifies where in the file the next output operation
will occur. Each time an input or an output operation takes place, the appropriate
pointer is automatically sequentially advanced. However, using the seekg() and seekp()
functions, it is possible to access the file in a nonsequential fashion.

The two-parameter version of seekg() moves the get pointer offset number of bytes
from the location specified by origin. The two-parameter version of seekp() moves the
put pointer offset number of bytes from the location specified by origin. The offset parameter
is of type off_type, which is capable of containing the largest valid value that offset
can have.

The origin parameter is of type seekdir and is an enumeration that has these values:

ios:beg Seek. from beginning
ios::cur Seek from current position
ios::end Seek from end

The single-parameter versions of seekg() and seekp() move the file pointers to the
location specified by position. This value must have been previously obtained using a call
to either tellg() or tellp(), respectively. pos_type is a type that is capable of containing
the largest valid value that position can have. These functions return a reference to the
associated stream.

Related functions are tellg() and tellp().

Chapter 32: The Standard C++ 1/0 Classes

setf

#include <iostream>
fmtflags setf (fmtflags flags):
fmtflags setf({fmtflags flagsl, fmtflags flagsZii;

The setf() function is a member of ios (inherited from ios_base).

The setf() function sets the format flags associated with a stream. See the discussion
of format flags earlier in this section.

The tirst version of setf() turns on the format flags specitied by flags. (All other
flags are unaffected.) For example, to turn on the showpos flag for cout, you can use
this statement:

cout.setf(ios: :showpos);

When you want to set more than one flag, you can OR together the values of the flags
you want set.

It is important to understand that a call to setf() is done relative to a specific stream.
There is no concept of calling setf() by itself. Put differently, there is no concept in C++
of global format status. Each stream maintains its own format status information
individually.

The second version of setf() affects only the flags that are set in flags2. The
corresponding flags are first reset and then set according to the flags specified by flags1.
Even if flags1 contains other set flags, only those specified by flags2 will be affected.

Both versions of setf() return the previous settings of the format flags associated
with the stream.

Related functions are unsetf() and flags().

setstate

#include <iostream>
void setstate(iostate flags) const;

The setstate() function is a member of ios.

The setstate() function sets the status of the associated stream as described by flags.
See rdstate() for further details.

Related functions are clear() and rdstate().

805

806 C++: The Complete Reference

str

#include <gstream>
string str() const;
void str(string &s:

The str() function is a member of stringstream, istringstream, and ostringstream.

The firs: form of the str() function returns a string object that contains the current
contents of the string-based stream.

The second form frees the string currently contained in the string strean and
substitutes the string referred to by s.

Related functions are get() and put().

stringstream, istringstream, ostringstream

#include <sstream>

explicit stringstream(ios::openmode mode

explicit stringstream(const string &str,
ios::openmode mode = ios::in | ios::out);

ios::in | ios::out);

istringstream(ios: :openmode mode=ios::in);

explic.t
10s::openmode mode=10S::in);

explicit istringstre=am(const string str,

explicit ostringstream(ios::openmode mode=i0s::out) ;

explicit ostringstream(const string str, 10s::openmode
mode=ios: :out) ;

The stringstream(), istringstream(), and ostringstream() functions are the
constructors of the stringstream, istringstream, and ostringstream classes, respectively.
These construct streams that are tied to strings.

The versions of stringstream(), istringstream(), and ostringstream() that specify
only the openmode parameter create empty streams. The versions that take a string
parameter initialize the string stream.

Here is an example that demonstrates the use of a string stream.

// Demonstrate string streams.
finclude <iostream:>

#include <sstream>

using namespace std;

Chapter 32:

int main()

{

// get string
string str = s.str();

cout << str << endl;

// output to string stream

s << "Numbers: " << 10 << "
int 1i;
double d;

s »>> str >> 1 >> d;

cout << str << " " << 1 << "

return 0;

The Standard C+4+ 1/0 Classes

stringstream s ("This is initial string.");

<< 123.2;

"o<< d;

The output produced by this program is shown here:

This 1s initial string.
Numbers: 10 123.2

A related function is str().
sync_with_stdio

#include <lostream>
bool sync_with_stdio(bool sync

= true);

The sync_with_stdio() function js a member of ios (inherited from ios_base).

Calling sync_with_stdio() allows the standard C-like I/O system to be safely used
concurrently with the C++ class-based 1/0O system. To turn off stdio synchronization,
pass false to sync_with_stdio(). The previous setting is returned: true for synchronized;
false for no synchronization. By default, the standard streams are synchronized. This
function is reliable only if called prior to any other [/O operations.

807

808 C++: The Complete Reference

tellg and tellp

#include <iostream>
pos_type tellgl();
pos_type tellp():

The tellg() function is a member of istream, and tellp() is a member of ostream.

The C++ I/0 system manages two pointers associated with a file. One is the get
pointer, which specifies where in the file the next input operation will occur. The other
is the put pointer, which specifies where in the file the next output operation will occur.
Each time an input or an output operation takes place, the appropriate pointer is
automatically sequentially advanced. You can determine the current position of the get
pointer using tellg() and of the put pointer using tellp().

pos_type is a type that is capable of holding the largest value that either function
can return.

The values returned by tellg() and tellp() can be used as parameters to seekg() and
seekp(), respectively.

Related functions are seekg() and seekp().

unsetf

#include <iostream>
void unsetf (fmtflags flags);

The unsetf() function is a member of ios (inherited from ios_base).
The unsetf() function is used to clear one or more format flags.

The flags specified by flags are cleared. (All other flags are unaffected.)
Related functions are setf() and flags().

#include <iostream>
streamsize width() const;
streamsize width(streamsize w);

The width() function is a member of ios (inherited from ios_base).

Chapter 32: The Standard C++ 1/0 Classes

To obtain the current field width, use the first form of width(). It returns the current
field width. To set the field width, use the second form. Here, w becomes the field width,
and the previous field width is returned.

Related functions are precision() and fill().

write

#include <iostream>
ostream &write{const char *buf, streamsize num);

The write() function is a member of ostream.

The write() function writes nin bytes to the associated output stream from the buffer
pointed to by buf. It returns a reference to the stream.

Related functions are read() and put().

809

